Microwave-assisted cation exchange toward synthesis of near-infrared emitting PbS/CdS core/shell quantum dots with significantly improved quantum yields through a uniform growth path.

نویسندگان

  • Fuqiang Ren
  • Haiguang Zhao
  • Fiorenzo Vetrone
  • Dongling Ma
چکیده

In this study, we develop a reproducible and controllable microwave-assisted cation exchange approach, for the first time, to quickly synthesize high-quality, near-infrared emitting PbS/CdS core/shell quantum dots (QDs). These monodisperse QDs, emitting in the range of 1300-1600 nm, show a quantum yield as high as 57% that is ~1.4 times higher than that achieved by the same QDs prepared using conventional heating in an oil bath. To the best of our knowledge, it is the highest reproducible value reported to date for PbS-based QDs in this emission range. More importantly, the as-synthesized PbS/CdS QDs can self-assemble nearly perfectly and easily at the micrometer scale as a result of their uniform shape and narrow size distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers.

High-quality water-soluble near-infrared emitting quantum dots (QDs) are synthesized using a two-step approach for the first time. The CdS shell efficiently increases the structural stability of PbS QDs during water transfer and leads to good photostability and a significantly enhanced quantum yield as high as 30% in buffer.

متن کامل

Towards understanding the unusual photoluminescence intensity variation of ultrasmall colloidal PbS quantum dots with the formation of a thin CdS shell.

In this study, we report anomalous size-dependent photoluminescence (PL) intensity variation of PbS quantum dots (QDs) with the formation of a thin CdS shell via a microwave-assisted cation exchange approach. Thin shell formation has been established as an effective strategy for increasing the PL of QDs. Nonetheless, herein we observed an unusual PL decrease in ultrasmall QDs upon shell formati...

متن کامل

A facile cation exchange-based aqueous synthesis of highly stable and biocompatible Ag₂S quantum dots emitting in the second near-infrared biological window.

Second near-infrared (NIR-II) emitting Ag2S quantum dots (QDs) with high stability and biocompatibility were synthesized and developed toward an ideal nanoprobe. This study reports a facile synthesis of NIR-II Ag2S QDs on the basis of cation exchange between visible-emitting CdS QDs and Ag(+) ions in aqueous solution. Experimental data testified that the cation exchange was quick and complete a...

متن کامل

Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods

The marriage of energy transfer with electrochemiluminescence has produced a new technology named electrochemiluminescence energy transfer (ECL-ET), which can realize effective and sensitive detection of biomolecules. To obtain optimal ECL-ET efficiency, perfect energy overlapped donor/acceptor pair is of great importance. Herein, we present a sensitive ECL-ET based immunosensor for the detecti...

متن کامل

Investigation of the Third-Order Nonlinear Optical Susceptibilities and Nonlinear Refractive Index In Pbs/Cdse/Cds Spherical Quantum Dot

In this study the third order nonlinear susceptibilities are theoreticallycalculated for an electron confined in an isolated PbS/ CdSe/ CdS spherical core-shellshellquantum dots. Our calculation is associated with intersubband transitions in theconduction band. We used the effective mass approximation in this study which is asimple and straightforward study of the third-order optical nonlineari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 17  شماره 

صفحات  -

تاریخ انتشار 2013